Melting Layer Detection Using Dual-Frequency Ratio (DFR) data from DPR

Toshio Iguchi (NICT) and Yuki Kaneko (JAXA), NASA PMM Science Team Meeting, Phoenix, Arizona, 8-12, October 2018

Algorithm for identifying the melting top in stratiform precipitation

- DFR $_{\rm m}$ vs $Z_{\rm m}$ (Ku or Ka) plot as a function of range exhibits a loop around the melting layer in stratiform rain.
 - DFR_m = $Z_m(Ku) Z_m(Ka)$
- The loop is made because the peak of $\mathrm{DFR_m}$ and that of $\mathrm{Z_e}$ appear at different ranges.
 - The DFR $_{\rm m}$ peak appears at a slightly higher altitude than the $Z_{\rm m}$ peak.
- The algorithm uses only the first derivatives of DFR_m and Z_m as major factors.
 - Approximate temperature is used to set the search window.
 - A very simple attenuation correction of HB type is used. (Att. correction is necessary only for relatively intense rain cases.)

Detectability of a melting layer

Summary

- DFR method identifies the existence of a melting layer in a stratiform storm even when the melting layer does not exhibit a clear bright band because of the smearing effect due to slant measurement.
- DFR method increases the detectability of a melting layer substantially, in particular near scan edges.
- Identification of the melting or freezing height in a convective storm is a future issue.